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1. Introduction

One of the outstanding problems in particle physics is to understand the mechanism of

electroweak symmetry breaking. Broadly speaking, models of natural electroweak sym-

metry breaking rely either on supersymmetry or on new strong dynamics at some scale

near the electroweak scale. However, it has long been appreciated that if the new strong

dynamics is QCD-like, it is in conflict with precision tests of electroweak observables [1].

Of particular concern is the S parameter. It does not violate custodial symmetry; rather,

it is directly sensitive to the breaking of SU(2). As such, it is difficult to construct models

that have S consistent with data, without fine-tuning.

The search for a technicolor model consistent with data, then, must turn to non-QCD-

like dynamics. An example is “walking” [2], that is, approximately conformal dynamics,

which can arise in theories with extra flavors. It has been argued that such nearly-conformal

dynamics can give rise to a suppressed or even negative contribution to the S parameter [3].

However, lacking nonperturbative calculational tools, it is difficult to estimate S in a given

technicolor theory.

In recent years, a different avenue of studying dynamical EWSB models has opened up

via the realization that extra dimensional models [4] may provide a weakly coupled dual

description to technicolor type theories [5]. The most studied of these higgsless models [6]
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is based on an AdS5 background in which the Higgs is localized on the TeV brane and has

a very large VEV, effectively decoupling from the physics. Unitarization is accomplished

by gauge KK modes, but this leads to a tension: these KK modes cannot be too heavy

or perturbative unitarity is lost, but if they are too light then there are difficulties with

electroweak precision: in particular, S is large and positive [7]. In this argument the

fermions are assumed to be elementary in the 4D picture (dual to them being localized

on the Planck brane). A possible way out is to assume that the direct contribution of the

EWSB dynamics to the S-parameter are compensated by contributions to the fermion-

gauge boson vertices [8, 9]. In particular, there exists a scenario where the fermions are

partially composite in which S ≈ 0 [10], corresponding to almost flat wave functions for the

fermions along the extra dimension. The price of this cancellation is a percent level tuning

in the Lagrangian parameter determining the shape of the fermion wave functions. Aside

from the tuning itself, this is also undesirable because it gives the model-builder very little

freedom in addressing flavor problems: the fermion profiles are almost completely fixed by

consistency with electroweak precision.

While Higgsless models are the closest extra-dimensional models to traditional tech-

nicolor models, models with a light Higgs in the spectrum do not require light gauge KK

modes for unitarization and can be thought of as composite Higgs models. Particularly

appealing are those where the Higgs is a pseudo-Nambu-Goldstone boson [11, 12]. In these

models, the electroweak constraints are less strong, simply because most of the new par-

ticles are heavy. They still have a positive S, but it can be small enough to be consistent

with data. Unlike the Higgsless models where one is forced to delocalize the fermions, in

these models with a higher scale the fermions can be peaked near the UV brane so that

flavor issues can be addressed.

Recently, an interesting alternative direction to eliminating the S-parameter constraint

has been proposed in [13]. There it was argued, that by considering holographic models

of EWSB in more general backgrounds with non-trivial profiles of a bulk Higgs field one

could achieve S < 0. The aim of this paper is to investigate the feasibility of this proposal.

We will focus on the direct contribution of the strong dynamics to S. In particular, we

imagine that the SM fermions can be almost completely elementary in the 4D dual picture,

corresponding to them being localized near the UV brane. In this case, a negative S would

offer appealing new prospects for model-building since such values of S are less constrained

by data than a positive value [14]. Unfortunately we find that the S > 0 quite generally,

and that backgrounds giving negative S appear to be pathological: they would require a

negative |h|2 for the Higgs profile, which would imply a ghostlike scalar kinetic term.

The outline of the paper is as follows. We first present the general 4D formalism and

definition of the S-parameter and explain what implications S < 0 would have on the

current correlators. This section is independent from the rest of the paper, and the readers

interested in the holographic considerations may skip directly to section 3. Here we first

review the formalism to calculate the S parameter in quite general models of EWSB using

an extra dimension. We also extend the proof of S > 0 for BC breaking [7] in arbitrary

metric to the case of arbitrary kinetic functions or localized kinetic mixing terms. These

proofs quite clearly show that no form of boundary condition breaking will result in S < 0.
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However, one may hope that (as argued in [13]) one can significantly modify this result by

using a bulk Higgs with a profile peaked towards the IR brane to break the electroweak

symmetry. Thus, in the crucial section 4, we show that S > 0 for models with bulk breaking

from a scalar VEV as well. Since the gauge boson mass is the lowest dimensional operator

sensitive to EWSB one would expect that this is already sufficient to cover all interesting

possibilities. However, since the Higgs VEV can be very strongly peaked, one may wonder

if other (higher dimensional) operators could become important as well. In particular, the

kinetic mixing operator of L,R after Higgs VEV insertion would be a direct contribution to

S. To study the effect of this operator in section 5, it is shown that the bulk mass term for

axial field can be converted to kinetic functions as well, making a unified treatment of the

effects of bulk mass terms and the effects of the kinetic mixing from the higher-dimensional

operator possible. Although we do not have a general proof that S > 0 including the effects

of the bulk kinetic mixing for a general metric and Higgs profile, in section 5.2 we present

a detailed scan for AdS metric and for power-law Higgs vev profile using the technique of

the previous section for arbitrary kinetic mixings. We find S > 0 once we require that

the higher-dimensional operator is of NDA size, and that the theory is ghost-free. We

summarize and conclude in section 6.

2. General formalism and considerations for S

In this section we define S and sketch the requirements on a theory with S < 0. The

reader mainly interested in the extra-dimensional constructions can skip this section since

it is independent from the rest of the paper. However, we think it is worthwhile to try

to understand what the implications of S < 0 were for a general technicolor-type theory.

The only assumptions we will make are that we have some strongly coupled theory that

spontaneously breaks SU(2)L×SU(2)R down to SU(2)V , and that at high energies the

symmetry is restored. Using these assumptions, we show that S < 0 would require more

complicated dynamics. The simplest extrapolations would always give S > 0.1

Consider a strongly-interacting theory with SU(2) vector current V a
µ and SU(2) axial

vector current Aa
µ. We define (where J represents V or A):

i

∫

d4x e−iq·x
〈

Ja
µ(x)Jb

µ(0)
〉

= δab
(

qµqν − gµνq2
)

ΠJ(q2). (2.1)

We further define the left-right correlator, denoted simply Π(q2), as ΠV (q2) − ΠA(q2).

In the usual way, ΠV and ΠA are related to positive spectral functions ρV (s) and ρA(s).

Namely, the Π functions are analytic functions of q2 everywhere in the complex plane except

for Minkowskian momenta, where poles and branch points can appear corresponding to

physical particles and multi-particle thresholds. The discontinuity across the singularities

on the q2 > 0 axis is given by a spectral function. In particular, there is a dispersion

relation

ΠV (q2) =
1

π

∫ ∞

0
ds

ρV (s)

s − q2 + iǫ
, (2.2)

1For a related discussion of the calculation of S in strongly coupled theories, see [15].
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with ρV (s) > 0, and similarly for ΠA.

Chiral symmetry breaking establishes that ρA(s) contains a term πf2
πδ(s). This is the

massless particle pole corresponding to the Goldstone of the spontaneously broken SU(2)

axial flavor symmetry. (The corresponding pions, of course, are eaten once we couple the

theory to the Standard Model, becoming the longitudinal components of the W± and Z

bosons. However, for now we consider the technicolor sector decoupled from the Standard

Model.) We define a subtracted correlator by Π̄(q2) = Π(q2)+ f2
π

q2 and a subtracted spectral

function by ρ̄A(s) = ρA(s) − πf2
πδ(s). Now, the S parameter is given by

S = 4πΠ̄(0) = 4

∫ ∞

0
ds

1

s
(ρV (s) − ρ̄A(s)) . (2.3)

Interestingly, there are multiple well-established nonperturbative facts about ΠV −ΠA, but

none are sufficient to prove that S > 0. There are the famous Weinberg sum rules [17]

1

π

∫ ∞

0
ds (ρV (s) − ρ̄A(s)) = f2

π , (2.4)

1

π

∫ ∞

0
ds s (ρV (s) − ρ̄A(s)) = 0. (2.5)

Further, Witten proved that Σ(Q2) = −Q2(ΠV (Q2) − ΠA(Q2)) > 0 for all Euclidean

momenta Q2 = −q2 > 0 [18]. However, the positivity of S seems to be more difficult to

prove.

Let us now consider the function Σ(Q2). In terms of this function, S = −4πΣ′(0).

(Note that in Σ(Q2) the 1/Q2 pole from ΠA is multiplied by Q2, yielding a constant that

does not contribute when we take the derivative. Thus when considering Σ we do not need

to subtract the pion pole as we did in Π̄.) We also know that Σ(0) = f2
π > 0. On the

other hand, we know something else that is very general about theories that spontaneously

break chiral symmetry: at very large Euclidean Q2, we should see symmetry restoration.

More specifically, we expect behavior like

Σ(Q2) → O
(

1

Q2k

)

, (2.6)

where k is associated with the dimension of some operator that serves as an order parameter

for the symmetry breaking. (In some 5D models the decrease of ΠA −ΠV will actually be

faster, e.g. in Higgsless models one has exponential decrease.) While we are most familiar

with this from the OPE of QCD, it should be very general. If a theory did not have

this property and ΠV and ΠA differed significantly in the UV, we would not view it as a

spontaneously broken symmetry, but as an explicitly broken one. Now, in this context,

positivity of S is just the statement that, because Σ(Q2) begins at a positive value and

eventually becomes very small, the smoothest behavior one can imagine is that it simply

decreases monotonically, and in particular, that Σ′(0) < 0 so that S > 0.2 The alternative

would be that the chiral symmetry breaking effects push Σ(Q2) in different directions

over different ranges of Q2. In the simplest case, chiral symmetry restoration will act to

2For a related discussion of the behaviour of Σ
`

Q2
´

in the case of large-Nc QCD, see [16].
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decrease Σ(Q2) as we move to larger Q2 and only non-minimal dynamics might generate a

non-monotonic behavior. Indeed, we will show below that in a wide variety of perturbative

holographic theories S is positive.

3. Boundary-effective-action approach to oblique corrections.

Simple cases with boundary breaking

In this section we review the existing results and calculational methods for the electroweak

precision observables (and in particular the S-parameter) in holographic models of elec-

troweak symmetry breaking. There are two equivalent formalisms for calculating these

parameters. One is using the on-shell wave function of the W/Z bosons [19], and the

electroweak observables are calculated from integrals over the extra dimension involving

these wave functions. The advantage of this method is that since it uses the physical wave

functions it is easier to find connections to the Z and the KK mass scales. The alternative

formalism proposed by Barbieri, Pomarol and Rattazzi [7] (and later extended in [20] to

include observables off the Z-pole) uses the method of the boundary effective action [21],

and involves off-shell wave functions of the boundary fields extended into the bulk. This

latter method leads more directly to a general expression of the electroweak parameters,

so we will be applying this method throughout this paper. A third approach uses a “de-

constructed” version of extra dimensional models (or “moose models”) for evaluating the

S-parameter [22]. Generic expressions for the S-parameter in moose models have also been

obtained in [23]. Below we will review the basic expressions from [7].

A theory of electroweak symmetry breaking with custodial symmetry has an SU(2)L×
SU(2)R global symmetry, of which the SU(2)L×U(1)Y subgroup is gauged (since the S-

parameter is unaffected by the extra B − L factor we will ignore it in our discussion). At

low energies, the global symmetry is broken to SU(2)D. In the holographic picture of [7]

the elementary SU(2)×U(1) gauge fields are extended into the bulk of the extra dimension.

The bulk wave functions are determined by solving the bulk EOM’s as a function of the

boundary fields, and the effective action is just the bulk action in terms of the boundary

fields.

In order to first keep the discussion as general as possible, we use an arbitrary back-

ground metric over an extra dimension parametrized by 0 < y < 1, where y = 0 corresponds

to the UV boundary, and y = 1 to the IR boundary. In order to simplify the bulk equations

of motion it is preferential to use the coordinates in which the metric takes the form3 [7]

ds2 = e2σdx2 + e4σdy2 . (3.1)

The bulk action for the gauge fields is given by

S = − 1

4g2
5

∫

d5x
√−g

(

(FL
MN )2 + (FR

MN )2
)

. (3.2)

3In this paper, we use a (−+ . . . +) signature. 5D bulk indices are denoted by capital Latin indices while

we use Greek letters for 4D spacetime indices. 5D indices will be raised and lowered using the 5D metric

while the 4D Minkowski metric is used for 4D indices.
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The bulk equations of motion are given by

∂2
yAL,R

µ − p2e2σAL,R
µ = 0, (3.3)

or equivalently the same equations for the combinations Vµ, Aµ = (AµL ± AµR)/
√

2.

We assume that the (light) SM fermions are effectively localized on the Planck brane

and that they carry their usual quantum numbers under SU(2)L × U(1)Y that remains

unbroken on the UV brane. The values of these fields on the UV brane have therefore a

standard couplings to fermion and they are the 4D interpolating fields we want to compute

an effective action for. This dictates the boundary conditions we want to impose on the

UV brane

ALa
µ (p2, 0) = ĀL a

µ (p2), AR 3
µ (p2, 0) = ĀR 3

µ (p2), AR 1,2
µ (p2, 0) = 0. (3.4)

A1,2
R are vanishing because they correspond to ungauged symmetry generators. The solu-

tions of the bulk equations of motion satisfying these UV BC’s take the form

Vµ(p2, y) = v(y, p2)V̄µ(p2), Aµ(p2, y) = a(y, p2)Āµ(p2). (3.5)

where the interpolating functions v and a satisfy the bulk equations

∂2
yf(y, p2) − p2e2σf(y, p2) = 0 (3.6)

and the UV BC’s

v(0, p2) = 1, a(0, p2) = 1. (3.7)

The effective action for the boundary fields reduces to a pure boundary term since by

integrating by parts the bulk action vanishes by the EOM’s:

Seff =
1

2g2
5

∫

d4x(Vµ∂yV
µ + Aµ∂yA

µ)|y=0 =
1

2g2
5

∫

d4p(V̄ 2
µ ∂yv + Ā2

µ∂ya)|y=0 (3.8)

And we obtain the non-trivial vacuum polarizations for the boundary vector fields

ΣV (p2) = − 1

g2
5

∂yv(0, p2), ΣA(p2) = − 1

g2
5

∂ya(0, p2). (3.9)

The various oblique electroweak parameters are then obtained from the momentum

expansion of the vacuum polarizations in the effective action,

Σ(p2) = Σ(0) + p2Σ′(0) +
p4

2
Σ′′(0) + . . . (3.10)

For example the S-parameter is given by

S = 16πΣ′
3B(0) = 8π(Σ′

V (0) − Σ′
A(0)). (3.11)

A similar momentum expansion can be performed on the interpolating functions v and a:

v(y, p2) = v(0)(y) + p2v(1)(y) + . . ., and similarly for a. The S-parameter is then simply

expressed as

S = −8π

g2
5

(∂yv
(1) − ∂ya

(1))|y=0. (3.12)
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The first general theorem was proved in [7]: for the case of boundary condition breaking

in a general metric, S ≥ 0. This was also shown in the context of moose models in [23].

The proof uses the explicit calculation of the functions v(n), a(n), n = 0, 1. First, the bulk

equations (3.3) write

∂2
yv(0) = ∂2

ya(0) = 0, ∂2
yv(1) = e2σv(0), ∂2

ya(1) = e2σa(0). (3.13)

And the p2-expanded UV BC’s are

v(0) = a(0) = 1, v(1) = a(1) = 0 at y = 0 (3.14)

Finally, we need to specify the BC’s on the IR brane that correspond to the breaking

SU(2)L×SU(2)R → SU(2)D
∂yVµ = 0, Aµ = 0, (3.15)

which translates into simple BC’s for the interpolating functions

∂yv
(n) = a(n) = 0, n = 0, 1. (3.16)

The solution of these equations are v(0) = 1, a(0) = 1 − y, v(1) =
∫ y

0 dy′
∫ y′

0 dy′′e2σ(y′′) −
y

∫ 1
0 dy′e2σ(y′), a(1) =

∫ y

0 dy′
∫ y′

0 dy′′e2σ(y′′)(1 − y′′) − y
∫ 1
0 dy′

∫ y′

0 dy′′e2σ(y′′)(1 − y′′). Conse-

quently

S =
8π

g2
5

(
∫ 1

0
dye2σ(y)dy −

∫ 1

0
dy

∫ y

0
dy′(1 − y′)e2σ(y′)

)

(3.17)

which is manifestly positive.

3.1 S > 0 for BC breaking with boundary kinetic mixing

The first simple generalization of the BC breaking model is to consider the same model but

with an additional localized kinetic mixing operator added on the TeV brane (the effect of

this operator has been studied in flat space in [7] and in AdS space in [19]). The localized

Lagrangian is

− τ

4g2
5

∫

d4x
√−gV 2

µν . (3.18)

This contains only the kinetic term for the vector field since the axial gauge field is set

to zero by the BC breaking. In this case the BC at y = 1 for the vector field is modified

to ∂yVµ + τp2Vµ = 0. In terms of the wave functions expanded in small momenta we

get ∂yv
(1) + τv(0) = 0. The only change in the solutions will be that now v(1)′ = −τ −

∫ 1
y

e2σ(y′)dy′, resulting in

S =
8π

g2
5

(
∫ 1

0
e2σ(y)dy −

∫ 1

0
dy

∫ y

0
(1 − y′)e2σ(y′)dy′ + τ

)

(3.19)

Thus as long as the localized kinetic term has the proper sign, the shift in the S-parameter

will be positive. If the sign is negative, there will be an instability in the theory since fields

localized very close to the TeV brane will feel a wrong sign kinetic term. Thus we conclude

that for the physically relevant case S remains positive.
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3.2 S > 0 for BC breaking with arbitrary kinetic functions

The next simple extension of the BPR result is to consider the case when there is an

arbitrary y-dependent function in front of the bulk gauge kinetic terms. These could be

interpreted as effects of gluon condensates modifying the kinetic terms in the IR. In this

case the action is

S = − 1

4g2
5

∫

d5x
√−g

(

φ2
L(y)(FL

MN )2 + φ2
R(y)(FR

MN )2
)

. (3.20)

φL,R(y) are arbitrary profiles for the gauge kinetic terms, which are assumed to be the

consequence of some bulk scalar field coupling to the gauge fields. Note that this case

also covers the situation when the gauge couplings are constant but g5L 6= g5R. The only

assumption we are making is that the gauge kinetic functions for L,R are strictly positive.

Otherwise one could create a wave packet localized around the region where the kinetic

term is negative which would have ghost-like behavior.

Due to the y-dependent kinetic terms it is not very useful to go into the V,A basis.

Instead we will directly solve the bulk equations in the original basis. The bulk equations

of motion for L,R are given by

∂y(φ
2
L,R∂yA

L,R
µ ) − p2e2σφ2

L,RAL,R
µ = 0 (3.21)

To find the boundary effective action needed to evaluate the S-parameter we perform the

following decomposition:

AL
µ(p2, y) = L̄µ(p2)LL(y, p2) + R̄µ(p2)LR(y, p2),

AR
µ (p2, y) = L̄µ(p2)RL(y, p2) + R̄µ(p2)RR(y, p2). (3.22)

Here L̄, R̄ are the boundary fields, and the fact that we have four wave functions expresses

the fact that these fields will be mixing due to the BC’s on the IR brane. The UV BC’s (3.4)

and the IR BC’s (3.15) can be written in terms of the interpolating functions as

(UV) LL(0, p2) = 1,

LR(0, p2) = 0,

RL(0, p2) = 0,

RR(0, p2) = 1. (3.23)

(IR) LL(1, p2) = RL(1, p2),

LR(1, p2) = RR(1, p2),

∂y(LL(1, p2) + RL(1, p2)) = 0,

∂y(LR(1, p2) + RR(1, p2)) = 0. (3.24)

The solution of these equations with the proper boundary conditions and for small values

of p2 is rather lengthy, so we have placed the details in appendix A. The end result is that

S = −8π

g2
5

(

φ2
L∂yL

(1)
R + φ2

R∂yR
(1)
L

)

|y=0 = −8π

g2
5

(aLR
+ aRL

), (3.25)

where the constants aRL
are negative as their explicit expressions shows it. Therefore S is

positive. This result can also be inferred from moose models [23].
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4. S > 0 in models with bulk Higgs

Having shown than S > 0 for arbitrary metric and EWSB through BC’s, in this section,

we switch to considering breaking of electroweak symmetry by a bulk scalar (Higgs) vev.

We begin by neglecting the effects of kinetic mixing between SU(2)L and SU(2)R fields

coming from higher-dimensional operator in the 5D theory, expecting that their effect,

being suppressed by the 5D cut-off, is sub-leading. We will return to a consideration of

such kinetic mixing effects in the following sections.

We will again use the metric (3.1) and the bulk action (3.2). Instead of BC breaking

we assume that EWSB is caused by a bulk Higgs which results in a y-dependent profile for

the axial mass term

−
∫

d5x
√−g

M2(y)

2g2
5

A2
M . (4.1)

Here M2 is a positive function of y corresponding to the background Higgs VEV. The bulk

equations of motion are:

(∂2
y − p2e2σ)Vµ = 0, (∂2

y − p2e2σ − M2e4σ)Aµ = 0. (4.2)

On the IR brane, we want to impose regular Neumann BC’s that preserve the full SU(2)L×
SU(2)R gauge symmetry

(IR) ∂yVµ = 0, ∂yAµ = 0. (4.3)

As in the previous section, the BC’s on the UV brane just define the 4D interpolating fields

(UV ) Vµ(p2, 0) = V̄µ(p2), Aµ(p2, 0) = Āµ(p2). (4.4)

The solutions of the bulk equations of motion satisfying these BC’s take the form

Vµ(p2, y) = v(y, p2)V̄µ(p2), Aµ(p2, y) = a(y, p2)Āµ(p2), (4.5)

where the interpolating functions v and a satisfy the bulk equations

∂2
yv − p2e2σv = 0, ∂2

ya − p2e2σa − M2e4σa = 0. (4.6)

As before, these interpolating functions are expanded in powers of the momentum:

v(y, p2) = v(0)(y) + p2v(1)(y) + . . ., and similarly for a. The S-parameter is again given by

the same expression

S = −8π

g2
5

(∂yv
(1) − ∂ya

(1))|y=0. (4.7)

We will not be able to find general solutions for a(1) and v(1) but we are going to prove

that ∂ya
(1) > ∂yv

(1) on the UV brane, which is exactly what is needed to conclude that

S > 0.

First at the zeroth order in p2, the solution for v(0) is simply constant, v(0) = 1, as

before. And a(0) is the solution of

∂2
ya(0) = M2e4σa(0), a(0)|y=0 = 1, ∂ya

(0)|y=1 = 0. (4.8)
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In particular, since a(0) is positive at y = 0, this implies that a(0) remains positive: if a(0)

crosses through zero it must be decreasing, but then this equation shows that the derivative

will continue to decrease and can not become zero to satisfy the other boundary condition.

Now, since a(0) is positive, the equation of motion shows that it is always concave up, and

then the condition that its derivative is zero at y = 1 shows that it is a decreasing function

of y. In particular, we have for all y

a(0)(y) ≤ v(0)(y), (4.9)

with equality only at y = 0.

Next consider the order p2 terms. What we wish to show is that ∂ya
(1) > ∂yv

(1)

at the UV brane. First, let’s examine the behavior of v(1): the boundary conditions are

v(1)|y=0 = 0 and ∂yv
(1)

∣

∣

y=1
= 0. The equation of motion is:

∂2
yv(1) = e2σv(0) = e2σ > 0, (4.10)

so the derivative of v(1) must increase to reach zero at y = 1. Thus it is negative everywhere

except y = 1, and v(1) is a monotonically decreasing function of y. Since v(1)|y=0 = 0, v(1)

is strictly negative on (0, 1].

For the moment suppose that a(1) is also strictly negative; we will provide an argument

for this shortly. The equation of motion for a(1) is:

∂2
ya(1) = e2σa(0) + M2e4σa(1). (4.11)

Now, we know that a(0) < v(0), so under our assumption that a(1) < 0, this means that

∂2
ya(1) ≤ ∂2

yv(1), (4.12)

with equality only at y = 0. But we also know that ∂yv
(1)∂ya

(1) at y = 1, since they

both satisfy Neumann boundary conditions there. Since the derivative of ∂ya
(1) is strictly

smaller over (0, 1], it must start out at a higher value in order to reach the same boundary

condition. Thus we have that

∂ya
(1)

∣

∣

∣

y=0
> ∂yv

(1)
∣

∣

∣

y=0
. (4.13)

The assumption that we made is that a(1) is strictly negative over the interval (0, 1].

The reason is the following: suppose that a(1) becomes positive at some value of y. Then

as it passes through zero it is increasing. But then we also have that ∂2
ya(1) = e2σa(0) +

M2e4σa(1), and we have argued above that a(0) > 0. Thus if a(1) is positive, ∂ya
(1) remains

positive, because ∂2
ya(1) cannot become negative. In particular, it becomes impossible to

reach the boundary condition ∂ya
(1) = 0 at y = 1. This fills the missing step in our

argument and shows that the S parameter must be positive.

In the rest of this section we show that the above proof for the positivity of S remains

essentially unchanged in the case when the bulk gauge couplings for the SU(2)L and SU(2)R
gauge groups are not equal. In this case (in order to get diagonal bulk equations of motion)
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one needs to also introduce the canonically normalized gauge fields. We start with the

generic action (metric factors are understood when contracting indices)

∫

d5x
√−g

(

− 1

4g2
5L

(FL
MN )2 − 1

4g2
5R

(FR
MN )2 − h2(z)

2
(LM − RM )2

)

(4.14)

To get to a canonically normalized diagonal basis we redefine the fields as

Ã =
1

√

g2
5L + g2

5R

(L − R) , Ṽ =
1

√

g2
5L + g2

5R

(

g5R

g5L
L +

g5L

g5R
R

)

. (4.15)

To get the boundary effective action, we write the fields Ṽ , Ã as

Ã(p2, z) =
1

√

g2
5L + g2

5R

(

L̄(p2) − R̄(p2)
)

ã(p2, z) , (4.16)

Ṽ (p2, z) =
1

√

g2
5L + g2

5R

(

g5R

g5L
L̄(p2) +

g5L

g5R
R̄(p2)

)

ṽ(p2, z) . (4.17)

Here L̄, R̄ are the boundary effective fields (with non-canonical normalization exactly

as in [7]), while the profiles ã, ṽ satisfy the same bulk equations and boundary conditions

as a, v in (4.2)–(4.4) with an appropriate replacement for M2 = (g2
5L + g2

5R)h2. In terms of

the canonically normalized fields, the boundary effective action takes its usual form

Seff =
1

2

∫

d4x
(

Ṽ ∂yṼ + Ã∂yÃ
)

y=0
. (4.18)

And we deduce the vacuum polarization

ΣL3B(p2) = − 1

g2
5L + g2

5R

(∂y ṽ(0, p2) − ∂yã(0, p2)) (4.19)

And finally the S-parameter is equal to

S = − 16π

g2
5L + g2

5R

(∂y ṽ
(1) − ∂yã

(1)) (4.20)

Since ã(n), ṽ(n), n = 0, 1 satisfy the same equations (4.2)–(4.4) as before, the proof goes

through unchanged and we conclude that S > 0.

5. Bulk Higgs and bulk kinetic mixing

Next, we wish to consider the effects of kinetic mixing from higher-dimensional operator in

the bulk involving the Higgs VEV — as mentioned earlier, this kinetic mixing is suppressed

by the 5D cut-off and hence expected to be a sub-leading effect. The reader might wonder

why we neglected it before, but consider it now? The point is that, although the leading

effect on S parameter is positive as shown above, it can be accidentally suppressed so

that the formally sub-leading effects from the bulk kinetic mixing can be important, in
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particular, such effects could change the sign of S. Also, the Higgs VEV can be large,

especially when the Higgs profile is “narrow” such that it approximates BC breaking, and

thus the large VEV can (at least partially) compensate the suppression from the 5D cut-

off. Of course, in this limit of BC breaking (δ-function VEV), we know that kinetic mixing

gives S < 0 only if tachyons are present in the spectrum, but we would like to cover the

cases intermediate between BC breaking limit and a broad Higgs profile as well. In this

section, we develop a formalism, valid for arbitrary metric and Higgs profile, to treat the

bulk mass term and kinetic mixing on the same footing and then we apply this technique

to models in AdS space and with power-law profiles for Higgs VEV in the next section.

We first present a discussion of how a profile for the y-dependent kinetic term is

equivalent to a bulk mass term. This is equivalent to the result [13] that a bulk mass term

can be equivalent to an effective metric. However, we find the particular formulation that

we present here to be more useful when we deal with the case of a kinetic mixing. Assume

we have a Lagrangian for a gauge field that has a kinetic term

S = − 1

4g2
5

∫

d5x
√−gφ2(y)F 2

MN (5.1)

We work in the axial gauge A5 = 0 and again the metric takes the form (3.1). We redefine

the field to absorb the function φ: Ã(y) = φ(y)A(y). The action in terms of the new field

is then written as

S = − 1

4g2
5

∫

d5x

(

e2σF̃ 2
µν + 2(∂yÃµ)2 + 2

φ′2

φ2
Ã2

µ − 4(∂yÃµ)Ãµ φ′

φ

)

(5.2)

To see that the kinetic profile φ is equivalent to a mass term, we integrate by parts in the

second term

S = − 1

4g2
5

∫

d5x
√−g

(

F̃ 2
MN + 2e−4σ φ′′

φ
Ã2

µ

)

+
1

2g2
5

∫

d4x
φ′

φ
Ã2

µ

∣

∣

∣

∣

1

0

(5.3)

Thus we find that a bulk kinetic profile is equivalent to a bulk mass plus a boundary mass.

The bulk equations of motion for the new variables will then be

∂2
yÃµ − e2σp2Ãµ − φ′′

φ
Ãµ = 0, (5.4)

and the boundary conditions become

∂yÃµ =
φ′

φ
Ãµ. (5.5)

Note, that despite the bulk mass term, there is still a massless mode whose wavefunction is

simply φ(z). Now we can reverse the argument and say that a bulk mass must be equivalent

to a profile for the bulk kinetic term plus a boundary mass term.

5.1 The general case

We have seen above how to go between a bulk mass terms and a kinetic function. We

will now use this method to discuss the general case, when there is electroweak sym-

metry breaking due to a bulk higgs with a sharply peaked profile toward the IR brane,
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and the same Higgs introduces kinetic mixing between L and R fields corresponding to

a higher dimensional operator from the bulk. For now we assume that the Higgs fields

that breaks the electroweak symmetry is in a (2,2) of SU(2)L×SU(2)R, with a VEV

〈H〉 = diag(h(z), h(z))/
√

2.4 This Higgs profile h has dimension 3/2. The 5D action

is given by
∫

d5x
√−g

[

− 1

4g2
5

[

(FL
MN )2 + (FR

MN )2
]

− (DMH)†(DMH) +
α

Λ2
Tr(FL

MNH†HFMN R)

]

.

(5.6)

Here α is a coefficient of O(1) and Λ is the 5D cutoff scale, given approximately by Λ ∼
24π3/g2

5 . The kinetic mixing term just generates a shift in the kinetic terms of the vector

and axial vector field, and we will write the bulk mass term also as a shift in the kinetic

term for the axial vector field. The exact form of the translation between the two forms is

given by answering the question of how to redefine the field with an action (note that m2

has a mass dimension 3)

− 1

4g2
5

∫

d5x
√−g

(

wF 2
MN + m22g2

5AµAµ
)

(5.7)

to a theory with only a modified kinetic term. The appropriate field redefinition A = ρÃ

will be canceling the mass term if ρ satisfies

∂y(w∂yρ) = m2g2
5e4σρ, (5.8)

together with the boundary conditions ρ′|y=1 = 0, ρ|y=0 = 1. The relation between the

new and the old expression for w will be w̃ = ρ2w. The action in this case is given by

− 1

4g2
5

∫

d5x
√−gw̃F̃ 2

MN +

∫

d4x
w̃(0)

2g2
5

(∂yρ)Ã2|y=0 (5.9)

This last boundary term is actually irrelevant for the S-parameter: since it does not contain

a derivative on the field it can not get an explicit p-dependence so it will not contribute to

S, so for practical purposes this boundary term can be neglected.

With this expression we now can calculate S. For this we need the modified version

of the formula from [13], where the breaking is not by boundary conditions but by a bulk

Higgs. The expression is

S =
8π

g2
5

∫ 1

0
dye2σ(wV − w̃A). (5.10)

In our case wV = 1 − αh2(y)2g2

5

Λ2 while w̃A = wAρ2 = (1 +
αh2(y)2g2

5

Λ2 )ρ2.

This formula also gives another way to see that S > 0 in the absence of kinetic mixing,

without analyzing the functions v(1) and a(1) from section 4 in detail. Without kinetic

mixing, wV = 1 and w̃A = ρ2, and the equation of motion for ρ is simply ∂2
yρ = m2g2

5e
4σρ.

In that case ρ is just the function we called a(0) in section 4. Since we showed there that

a(0) ≤ 1, we see that our expression 5.10 gives an alternative argument that S > 0 without

kinetic mixing, because it is simply an integral of e2σ(1 − ρ2) ≥ 0.

4An alternative possibility would be to consider a Higgs in the (3,3) representation of SU(2)L×SU(2)R.
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5.2 Scan of the parameter space for AdS backgrounds

Having developed the formalism for a unified treatment of bulk mass terms and bulk

kinetic mixing, we then apply it to the AdS case with a power-law profile for the Higgs

vev. Requiring (i) calculability of the 5D theory, i.e., NDA size of the higher-dimensional

operator, (ii) that excited W/Z’s are heavier than a few 100 GeV, and (iii) a ghost-free

theory, i.e., positive kinetic terms for both V and A fields, we find that S is always positive

in our scan for this model. We do not have a general analytical proof similar to the ones

presented in the previous sections to show that S > 0 for an arbitrary background with

arbitrary Higgs profiles, if we include the effects of the bulk kinetic mixing. However the

exhaustive numerical scan that we performed for AdS backgrounds and simple polynomial

higgs profiles indicates that for the physically relevant solutions S > 0 even in the presence

of bulk kinetic mixing. For this scan we will take the parametrization of the Higgs profile

from [24]. Here the metric is taken as AdS space

ds2 =

(

R

z

)2
(

ηµνdxµdxν − dz2
)

, (5.11)

where as usual R < z < R′. The bulk Higgs VEV is assumed to be a pure monomial in

z (rather than a combination of an increasing and a decreasing function). The reason for

this is that we are only interested in the effect of the strong dynamics on the electroweak

precision parameters. A term in the Higgs VEV growing toward the UV brane would mean

that the value of bulk Higgs field evaluated on the UV brane gets a VEV, implying that

there is EWSB also by a elementary Higgs (in addition to the strong dynamics) in the 4D

dual. We do not want to consider such a case. The form of the Higgs VEV is then assumed

to be

v(z) =

√

2(1 + β) log R′/R

(1 − (R/R′)2+2β)

gV

g5

R′

R

( z

R′

)2+β

, (5.12)

where the parameter β characterizes how peaked the Higgs profile is toward the TeV brane

(β → −1 corresponds to a flat profile, β → ∞ to an infinitely peaked one). The other

parameter V corresponds to an “effective Higgs VEV”, and is normalized such that for

V → 246 GeV we recover the SM and the KK modes decouple (R′ → ∞ irrespective of β).

For more details about the definitions of these parameters see [24].5

We first numerically fix the R′ parameter for every given V, β and kinetic mixing

parameter α by requiring that the W -mass is reproduced. We do this approximately, since

we assume the simple matching relation 1/g2 = R log(R′/R)/g2
5 to numerically fix the value

of g5, which is only true to leading order, but due to wave function distortions and the extra

kinetic term will get corrected. Then, ρ can be numerically calculated by solving (5.8),

and from this S can be obtained via (5.10).

We see that S decreases as we increase α. On the the hand, the kinetic function for

vector field (wV ) also decreases in this limit. So, in order to find the minimal value of S

consistent with the absence of ghosts in the theory, we find numerically the maximal value

5Refs. [25] also considered similar models.
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Figure 1: The contours of models with fixed values of the S-parameter due to the electroweak

breaking sector. In the left panel we fix 1/R = 108 GeV, while in the right 1/R = 1018 GeV. The

gauge kinetic mixing parameter α is fixed to be the maximal value corresponding to the given V, β

(and R′ chosen such that the W mass is approximately reproduced). In the left panel the contours

are S = 1, 2, 3, 4, 5, 6, while in the right S = 1, 1.5, 2.

of α for every value of V, β for which the kinetic function of the vectorlike gauge field is still

strictly positive. We then show contour plots for the minimal value of S taking this optimal

value of α as a function of V, β in figure 1. In the first figure we fix R′ = 10−8 GeV−1,

which is the usual choice for higgsless models with light KK W’ and Z’ states capable of

rendering the model perturbative. In the second plot we choose the more conventional

value R = 10−18 GeV−1. We can see the S is positive in both cases over all of the physical

parameter space.

We can estimate the corrections to the above matching relation from the wavefunction

distortion and kinetic mixing as follows. The effect from wavefunction distortion is expected

to be ∼ g2S/(16π) which is
<∼ 10% if we restrict to regions of parameter space with

S
<∼ 10. Similarly, we estimate the effect due to kinetic mixing by simply integrating the

operator over the extra dimension to find a deviation ∼ g6(V R′)2 log2 (R′/R) /
(

24π3
)2

.

So, if restrict to V
<∼ 1 TeV and 1/R′ >∼ 100 GeV, then this deviation is also small enough.

We see that both effects are small due to the deviation being non-zero only near IR brane

– even though it is O(1) in that region, whereas the zero-mode profile used in the matching

relation is spread throughout the extra dimension.

In order to be able to make a more general statement (and to check that the neglected

additional contributions to the gauge coupling matching from the wave function distor-

tions and the kinetic mixing indeed do not significantly our results) we have performed an

additional scan over AdS space models where we do not require the correct physical value

of MW to be reproduced. In this scan we then treat R′ as an independent free parameter.

In this case the correct matching between g and g5 is no longer important for the sign of

S, since at every place where g5 appears it is multiplied by a parameter we are scanning

over anyway (V or α).

We performed the scan again for two values of the AdS curvature, 1/R = 108 and

1018 GeV. For the first case we find that if we restrict α < 10, 1/R′ < 1 TeV there is no
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case with S < 0. However, there are some cases with S < 0 for α > 10, although in these

cases the theory is likely not predictive. For 1/R = 1018 GeV we find that S < 0 only for

V ∼ 250 GeV and β ∼ 0, 1/R′ ∼ 1TeV, and if α is of order one (for example α ∼ 5). We

can see that in this last case there is a light physical Higgs in the spectrum, since the VEV

is SM size. Thus in this case electroweak symmetry breaking is not triggered directly by

the strong dynamics: the role of the strong dynamics is to create the composite Higgs as

in [11]. Then unitarization of the W − W scattering is mostly due to the light composite

Higgs, and the vector resonances can be quite a bit heavier, which is a well-known way of

reducing the S-parameter [11]. Therefore this result does not contradict the expectation

that when EWSB is triggered directly via strong dynamics, then S is large and positive.

However, the existence of this corner of the parameter space shows that any general proof

for S > 0 purely based on analyzing the properties of eqs. (5.8)–(5.10) is doomed to failure,

since these equations contain physical situations where EWSB is not directly due to the

strong dynamics but due to a light Higgs in the spectrum. Thus a general 5D proof for

S > 0 that incorporates the cases with higher dimensional operators likely needs to include

a requirement on the decoupling of the physical Higgs.

6. Conclusions

In this paper, we have studied the S parameter in holographic technicolor models, focusing

especially on its sign. The motivation for our study was as follows. An alternative (to

SUSY) solution to the Planck-weak hierarchy involves a strongly interacting 4D sector

spontaneously breaking the EW symmetry. One possibility for such a strong sector is a

scaled-up version of QCD as in the traditional technicolor models. In such models, we can

use the QCD data to “calculate” S finding S ∼ +O(1) which is ruled out by the electroweak

precision data. Faced by this constraint, the idea of a “walking” dynamics was proposed

and it can be then argued that S < 0 is possible which is much less constrained by the

data, but the S parameter cannot be calculated in such models. In short, there is a dearth

of calculable models of (non-supersymmetric) strong dynamics in 4D.

Based on the AdS/CFT duality, the conjecture is that certain kinds of theories of strong

dynamics in 4D are dual to physics of extra dimensions. The idea then is to construct

models of EWSB in an extra dimension. Such constructions allow more possibilities for

model-building, at the same time maintaining calculability if the 5D strong coupling scale

is larger than the compactification scale, corresponding to large number of technicolors in

the 4D dual.

It was already shown that S > 0 for boundary condition breaking for arbitrary metric

(a proof for S > 0 for the case of breaking by a localized Higgs vev was recently studied in

reference [26]). In this paper, we have extended the proof for boundary condition breaking

to the case of arbitrary bulk kinetic functions for gauge fields or gauge kinetic mixing.

Throughout this paper, we have assumed that the (light) SM fermions are effectively

localized near the UV brane so that flavor violation due to higher-dimensional operators

in the 5D theory can be suppressed, at the same time allowing for a solution to the flavor

hierarchy. Such a localization of the light SM fermions in the extra dimension is dual to
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SM fermions being “elementary”, i.e., not mixing with composites from the 4D strong

sector. It is known that the S parameter can be suppressed (or even switch sign) for a flat

profile for SM fermions (or near the TeV brane) — corresponding to mixing of elementary

fermions with composites in the 4D dual, but in such a scenario flavor issues could be a

problem.

We also considered the case of bulk breaking of the EW symmetry motivated by

recent arguments that S < 0 is possible with different effective metrics for vector and axial

fields. For arbitrary metric and Higgs profile, we showed that S > 0 at leading order, i.e.,

neglecting effects from all higher-dimensional operators in the 5D theory (especially bulk

kinetic mixing), which are expected to be sub-leading effects being suppressed by the cut-

off of the 5D theory. We also note that boundary mass terms can generally be mimicked to

arbitrary precision by localized contributions to the bulk scalar profile, so we do not expect

a more general analysis of boundary plus bulk breaking to find new features. Obtaining

S < 0 must then require either an unphysical Higgs profile or higher-dimensional operators

to contribute effects larger than NDA size, in which case we lose calculability of the 5D

theory.

To make our case for S > 0 stronger, we then explored effects of the bulk kinetic

mixing between SU(2)L,R gauge fields due to Higgs vev coming from a higher-dimensional

operator in the 5D theory. Even though, as mentioned above, this effect is expected to be

sub-leading, it can nevertheless be important (especially for the sign of S) if the leading

contribution to S is accidentally suppressed. Also, the large Higgs VEV, allowed for narrow

profiles in the extra dimension (approaching the BC breaking limit), can compensate the

suppression due to the cut-off in this operator. For this analysis, we found it convenient

to convert bulk (mass)2 for gauge fields also to kinetic functions. Although a general proof

for S > 0 is lacking in such a scenario, using the above method of treating the bulk mass

for axial fields, we found that S ∼ +O(1) for AdS5 model with power-law Higgs profile in

the viable (ghost-free) and calculable regions of the parameter space.

In summary, our results combined with the previous literature strongly suggests that

S is positive for calculable models of technicolor in 4D and 5D.
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We thank Deog-Ki Hong and Ho-Ung Yee for pointing out their paper to us.

A. Details of BC breaking with arbitrary kinetic functions

Here we present the detailed calculation of S in the case with boundary breaking and

arbitrary kinetic functions described in section 3.2. Recall that we had the following

decomposition:

AL
µ(p2, y) = L̄µ(p2)LL(y, p2) + R̄µ(p2)LR(y, p2),

AR
µ (p2, y) = L̄µ(p2)RL(y, p2) + R̄µ(p2)RR(y, p2), (A.1)

with boundary conditions

(UV) LL(0, p2) = 1,

LR(0, p2) = 0,

RL(0, p2) = 0,

RR(0, p2) = 1. (A.2)

(IR) LL(1, p2) = RL(1, p2),

LR(1, p2) = RR(1, p2),

∂y(LL(1, p2) + RL(1, p2)) = 0,

∂y(LR(1, p2) + RR(1, p2)) = 0. (A.3)

The action again reduces to a boundary term

Seff =
1

2g2
5

(

φ2
L(0)Lµ∂Lµ + φ2

R(0)Rµ∂Rµ
)

, (A.4)

so we find that

S = −8π

g2
5

(

φ2
L∂yL

(1)
R + φ2

R∂yR
(1)
L

)

|y=0 (A.5)

where we have done an expansion in terms of the momentum for all the wave functions as

usual as LL(y, p2) = L
(0)
L (y) + p2L

(1)
L (y) + . . .. The lowest order wave functions satisfy the

following bulk equations:

∂y(φ
2
I∂yI

(0)
J ) = 0, (A.6)

where I and J can refer to L or R. Imposing the BC’s these equations can be simply solved

in terms of the integrals

fL(y) =

∫ y

0
dy′

φ2

L
(y′)

∫ 1
0

dy′

φ2

L
(y′)

+
φ2

R
(1)

φ2

L
(1)

∫ 1
0

dy′

φ2

R
(y′)

, fR(y) =

∫ y

0
dy′

φ2

R
(y′)

∫ 1
0

dy′

φ2

R
(y′)

+
φ2

L
(1)

φ2

R
(1)

∫ 1
0

dy′

φ2

L
(y′)

(A.7)
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as

L
(0)
L = 1 − fL(y), L

(0)
R = fL(y), R

(0)
L = fR(y), R

(0)
R = 1 − fR(y). (A.8)

In order to actually find S we need to go one step further, that is calculate the next order

terms in the wave functions I
(1)
J . These will satisfy the equations

∂y(φ
2
I∂yI

(1)
J ) = e2σφ2

II
(0)
J , (A.9)

where for the I
(0)
J we use the solutions in (A.8). The form of the solutions will be given by

I
(1)
J (y) =

∫ y

0

dy′

φ2
I(y

′)

∫ y′

0
due2σφ2

I(u)I
(0)
J (u) + aIJ

∫ y

0

dy′

φ2
I

, (A.10)

where aIJ
are constants. In terms of these quantities the S-parameter is just given by

S = −8π

g2
5

(aLR
+ aRL

) (A.11)

One can again solve the boundary conditions to find the constants aRL
, aLR

. These turn

out to be

aRL
= − 1

NR

[
∫ 1

0

dy

φ2
L(y)

∫ 1

y

dy′e2σ(y′)φ2
L(y′)(1 − fL(y′))

+
φ2

L(1)

φ2
R(1)

∫ 1

0
dye2σ(y)φ2

R(y)fR(y)

∫ 1

0

dy

φ2
L(y)

+

∫ 1

0

dy

φ2
R(y)

∫ y

0
dy′e2σ(y′)φ2

R(y′)fR(y′)

]

(A.12)

where

NR =

∫ 1

0

dy

φ2
R(y)

+
φ2

L(1)

φ2
R(1)

∫ 1

0

1

φ2
L(y)

. (A.13)

A similar expressions applies for aLR
with L ↔ R everywhere. Since 0 < fL,R < 1, we can

see that every term in the expression is manifestly positive, so S is definitely positive.
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